Anaconda
信息
Anaconda 提供了在一台机器上执行 Python/R 数据科学和机器学习的最简单方法。
| 官网 | Anaconda 文档 | conda 文档 |
安装
- 前往官网 下载安装
- 使用 Chocolatey 安装
choco install anaconda3 -y
安装完成后开始菜单中会有以下程序:

配置
在 PowerShell 中启用 conda
以 管理员身份运行 Anaconda Powershell Prompt 并执行以下指令:
conda init powershell

启动 PowerShell 时不要默认启动 Anaconda:
conda config --set auto_activate_base False
需要时可手动启动:
conda activate base
配置镜像源
- anaconda | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
- anaconda镜像_anaconda下载地址_anaconda安装教程-阿里巴巴开源镜像站
修改用户目录下的 .condarc 文件,没有该文件可以使用 conda config --set show_channel_urls yes 生成。
~/.condarc
channels:
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.aliyun.com/anaconda/pkgs/main
  - http://mirrors.aliyun.com/anaconda/pkgs/r
  - http://mirrors.aliyun.com/anaconda/pkgs/msys2
# - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
# - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
# - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.aliyun.com/anaconda/cloud
  msys2: http://mirrors.aliyun.com/anaconda/cloud
  bioconda: http://mirrors.aliyun.com/anaconda/cloud
  menpo: http://mirrors.aliyun.com/anaconda/cloud
  pytorch: http://mirrors.aliyun.com/anaconda/cloud
  simpleitk: http://mirrors.aliyun.com/anaconda/cloud
# conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
# msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
# bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
# menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
# pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
# pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
# simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
# deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/
PyChram
选择 Conda 可执行文件路径
选择 Anaconda 安装目录中的:Anaconda3\Scripts\conda.exe 文件即可。
终端无法激活 conda 环境
建议使用 Powershell 7;
安装后 Shell 路径设置为:C:\Program Files\PowerShell\7\pwsh.exe
使用
安装完成后可使用 conda 命令:
conda -h
(base) PS C:\Users\Yue_plus> conda -h
usage: conda-script.py [-h] [-V] command ...
conda is a tool for managing and deploying applications, environments and packages.
Options:
positional arguments:
  command
    clean        Remove unused packages and caches.
    compare      Compare packages between conda environments.
    config       Modify configuration values in .condarc. This is modeled after the git config command. Writes to the user .condarc file (C:\Users\Yue_plus\.condarc) by default. Use the --show-sources flag
                 to display all identified configuration locations on your computer.
    create       Create a new conda environment from a list of specified packages.
    info         Display information about current conda install.
    init         Initialize conda for shell interaction.
    install      Installs a list of packages into a specified conda environment.
    list         List installed packages in a conda environment.
    package      Low-level conda package utility. (EXPERIMENTAL)
    remove       Remove a list of packages from a specified conda environment.
    rename       Renames an existing environment.
    run          Run an executable in a conda environment.
    search       Search for packages and display associated information.The input is a MatchSpec, a query language for conda packages. See examples below.
    uninstall    Alias for conda remove.
    update       Updates conda packages to the latest compatible version.
    upgrade      Alias for conda update.
    notices      Retrieves latest channel notifications.
optional arguments:
  -h, --help     Show this help message and exit.
  -V, --version  Show the conda version number and exit.
conda commands available from other packages:
  build
  content-trust
  convert
  debug
  develop
  env
  index
  inspect
  metapackage
  pack
  render
  repo
  server
  skeleton
  token
  verify
依赖包管理文件
conda 通常使用 environment.yml 文件记录依赖包。
导出当前环境的依赖
conda env export --from-history > environment.yaml
从文件创建新环境
conda env create --file environment.yml
常用命令
# 查看安装了哪些包
conda list
# 查看当前存在哪些虚拟环境
conda env list 
conda info -e
# 检查更新当前 conda
conda update conda
# 创建新的虚拟环境
conda create --name $ENV_NAME python=x.x
# 删除虚拟环境
conda env remove --name $ENV_NAME
# 切换环境
conda activate $ENV_NAME