-
∫ax+bdx=a1ln∣ax+b∣+C
-
∫(ax+b)μdx=a(μ+1)1(ax+b)μ+1+C(μ=−1)
-
∫ax+bxdx=a21(ax+b−bln∣ax+b∣)+C
-
∫ax+bx2dx=a31[21(ax+b)2−2b(ax+b)+b2ln∣ax+b∣]+C
-
∫x(ax+b)dx=−b1lnxax+b+C
-
∫x2(ax+b)dx=−bx1+b2alnxax+b+C
-
∫(ax+b)2xdx=a21(ln∣ax+b∣+ax+bb)+C
-
∫(ax+b)2x2dx=a31(ax+b−2bln∣ax+b∣−ax+bb2)+C
-
∫x(ax+b)2dx=b(ax+b)1−b21lnxax+b+C
-
∫ax+bdx=3a2(ax+b)3+C
-
∫xax+bdx=15a22(3ax−2b)(ax+b)3+C
-
∫x2ax+bdx=105a32(15a2x2−12abx+8b2)(ax+b)3+C
-
∫ax+bxdx=3a22(ax−2b)ax+b+C
-
∫ax+bx2dx=15a32(3a2x2−4abx+8b2)ax+b+C
-
∫xax+bdx=⎩⎨⎧b1lnax+b+bax+b−b+C−b2arctan(−bax+b)+C(b>0)(b<0)
-
∫x2ax+bdx=−bxax+b−2ba∫xax+bdx
-
∫xax+bdx=2ax+b+b∫xax+bdx
-
∫x2ax+bdx=−xax+b+2a∫xax+bdx
-
∫x2+a2dx=arshax+C1=ln(x+x2+a2)+C
-
∫(x2+a2)3dx=a2x2+a2x+C
-
∫x2+a2xdx=x2+a2+C
-
∫(x2+a2)3xdx=−x2+a21+C
-
∫x2+a2x2dx=2xx2+a2−2a2ln(x+x2+a2)+C
-
∫(x2+a2)3x2dx=−x2+a2x+ln(x+x2+a2)+C
-
∫xx2+a2dx=a1ln∣x∣x2+a2−a+C
-
∫x2x2+a2dx=−a2xx2+a2+C
-
∫x2+a2dx=2xx2+a2+2a2ln(x+x2+a2)+C
-
∫(x2+a2)3dx=8x(2x2+5a2)x2+a2+83a4ln(x+x2+a2)+C
-
∫xx2+a2dx=31(x2+a2)3+C
-
∫x2x2+a2dx=8x(2x2+a2)x2+a2−8a4ln(x+x2+a2)+C
-
∫xx2+a2dx=x2+a2+aln∣x∣x2+a2−a+C
-
∫x2x2+a2dx=−xx2+a2+ln(x+x2+a2)+C
-
∫x2−a2dx=∣x∣xarcha∣x∣+C1=lnx+x2−a2+C
-
∫(x2−a2)3dx=−a2x2−a2x+C
-
∫x2−a2xdx=x2−a2+C
-
∫(x2−a2)3xdx=−x2−a21+C
-
∫x2−a2x2dx=2xx2−a2+2a2lnx+x2−a2+C
-
∫(x2−a2)3x2dx=−x2−a2x+lnx+x2−a2+C
-
∫xx2−a2dx=a1arccos∣x∣a+C
-
∫x2x2−a2dx=a2xx2−a2+C
-
∫x2−a2dx=2xx2−a2−2a2lnx+x2−a2+C
-
∫(x2−a2)3dx=8x(2x2−5a2)x2−a2+83a4lnx+x2−a2+C
-
∫xx2−a2dx=31(x2−a2)3+C
-
∫x2x2−a2dx=8x(2x2−a2)x2−a2−8a4lnx+x2−a2+C
-
∫xx2−a2dx=x2−a2−aarccos∣x∣a+C
-
∫x2x2−a2dx=−xx2−a2+lnx+x2−a2+C
-
∫a2−x2dx=arcsinax+C
-
∫(a2−x2)3dx=a2a2−x2x+C
-
∫a2−x2xdx=−a2−x2+C
-
∫(a2−x2)3xdx=a2−x21+C
-
∫a2−x2x2dx=−2xa2−x2+2a2arcsinax+C
-
∫(a2−x2)3x2dx=a2−x2x−arcsinax+C
-
∫xa2−x2dx=a1ln∣x∣a−a2−x2+C
-
∫x2a2−x2dx=−a2xa2−x2+C
-
∫a2−x2dx=2xa2−x2+2a2arcsinax+C
-
∫(a2−x2)3dx=8x(5a2−2x2)a2−x2+83a4arcsinax+C
-
∫xa2−x2dx=−31(a2−x2)3+C
-
∫x2a2−x2dx=8x(2x2−a2)a2−x2+8a4arcsinax+C
-
∫xa2−x2dx=a2−x2+aln∣x∣a−a2−x2+C
-
∫x2a2−x2dx=−xa2−x2−arcsinax+C
-
∫sinxdx=−cosx+C
-
∫cosxdx=sinx+C
-
∫tanxdx=−ln∣cosx∣+C
-
∫cotxdx=ln∣sinx∣+C
-
∫secxdx=lntan(4π+2x)+C=ln∣secx+tanx∣+C
-
∫cscxdx=lntan2x+C=ln∣cscx−cotx∣+C
-
∫sec2xdx=tanx+C
-
∫csc2xdx=−cotx+C
-
∫secxtanxdx=secx+C
-
∫cscxcotxdx=−cscx+C
-
∫sin2xdx=2x−41sin2x+C
-
∫cos2xdx=2x+41sin2x+C
-
∫sinnxdx=n1sinn−1xcosx+nn−1∫sinn−2xdx
-
∫cosnxdx=n1cosn−1xsinx+nn−1∫cosn−2xdx
-
∫sinnxdx=−n−11⋅sinn−1xcosx+n−1n−2∫sinn−2xdx
-
∫cosnxdx=n−11⋅cosn−1xsinx+n−1n−2∫cosn−2xdx
-
∫cosmxsinnxdx=m+n1cosm−1xsinn+1x+m+nm−1∫cosm−2xsinnxdx=−m+n1cosm+1xsinn−1x+m+nn−1∫cosmxsinn−2xdx
-
∫sinaxcosbxdx=−2(a+b)1cos(a+b)x−2(a−b)1cos(a−b)x+C
-
∫sinaxsinbxdx=−2(a+b)1sin(a+b)x+2(a−b)1sin(a−b)x+C
-
∫cosaxcosbxdx=2(a+b)1sin(a+b)x+2(a−b)1sin(a−b)x+C
-
∫a+bsinxdx=a2−b22arctana2−b2atan2x+b+C(a2>b2)
-
∫a+bsinxdx=b2−a21lnatan2x+b+b2−a2atan2x+b−b2−a2+C(a2<b2)
-
∫a+bcosxdx=a+b2a−ba+barctan(a+ba−btan2x)+C(a2>b2)
-
∫a+bcosxdx=a+b1b−aa+blntan2x−b−aa+btan2x+b−aa+b+C(a2<b2)
-
∫a2cos2x+b2sin2xdx=ab1arctan(abtanx)+C
-
∫a2cos2x−b2sin2xdx=2ab1lnbtanx−abtanx+a+C
-
∫xsinaxdx=a21sinax−a1xcosax+C
-
∫x2sinaxdx=−a1x2cosax+a22xsinax+a32cosax+C
-
∫xcosaxdx=a21cosax+a1xsinax+C
-
∫x2cosaxdx=a1x2sinax+a22xcosax−a32sinax+C
-
∫arcsinaxdx=xarcsinax+a2−x2+C
-
∫xarcsinaxdx=(2x2−4a2)arcsinax+4xa2−x2+C
-
∫x2arcsinaxdx=3x3arcsinax+91(x2+2a2)a2−x2+C
-
∫arccosaxdx=xarccosax−a2−x2+C
-
∫xarccosaxdx=(2x2−4a2)arccosax−4xa2−x2+C
-
∫x2arccosaxdx=3x3arccosax−91(x2+2a2)a2−x2+C
-
∫arctanaxdx=xarctanax−2aln(a2+x2)+C
-
∫xarctanaxdx=21(a2+x2)arctanax−2ax+C
-
∫x2arctanaxdx=3x3arctanax−6ax2+6a3ln(a2+x2)+C
-
∫axdx=lna1ax+C
-
∫eaxdx=a1eax+C
-
∫xeaxdx=a21(ax−1)eax+C
-
∫xneaxdx=a1xneax−an∫xn−1eaxdx
-
∫xaxdx=lnaxax−(lna)21ax+C
-
∫xnaxdx=lna1xnax−lnan∫xn−1axdx
-
∫eaxsinbxdx=a2+b21eax(asinbx−bcosbx)+C
-
∫eaxcosbxdx=a2+b21eax(bsinbx+acosbx)+C
-
∫eaxsinnbxdx=a2+b2n21eaxsinn−1bx(asinbx−nbcosbx)+a2+b2n2n(n−1)b2∫eaxsinn−2bxdx
-
∫eaxcosnbxdx=a2+b2n21eaxcosn−1bx(acosbx+nbsinbx)+a2+b2n2n(n−1)b2∫eaxcosn−2bxdx
-
∫−ππcosnxdx=∫−ππsinnxdx=0
-
∫−ππcosmxsinnxdx=0
-
∫−ππcosmxcosnxdx={0,π,m=n,m=n.
-
∫−ππsinmxsinnxdx={0,π,m=n,m=n.
-
∫0πsinmxsinnxdx=∫0πcosmxcosnxdx={0,2π,m=n,m=n.
-
In=∫02πsinnxdx=∫02πcosnxdx
In=nn−1In−2
={nn−1⋅n−2n−3⋅⋯⋅54⋅32nn−1⋅n−2n−3⋅⋯⋅43⋅21⋅2π(n 为大于 1 的正奇数),(n 为正偶数),I1=1,I0=2π.