跳到主要内容

积分表

(一) 含有 ax+bax+b 的积分

  1. dxax+b=1alnax+b+C\int \frac{\mathrm{d} x}{ax+b} = \frac{1}{a} \ln |ax+b| + C

  2. (ax+b)μdx=1a(μ+1)(ax+b)μ+1+C(μ1)\int (ax+b)^{\mu} \mathrm{d} x = \frac{1}{a(\mu+1)} (ax+b)^{\mu+1} + C \quad (\mu \neq -1)

  3. xax+bdx=1a2(ax+bblnax+b)+C\int \frac{x}{ax+b} \mathrm{d} x = \frac{1}{a^2} \left(ax + b - b \ln |ax+b| \right) + C

  4. x2ax+bdx=1a3[12(ax+b)22b(ax+b)+b2lnax+b]+C\int \frac{x^2}{ax+b} \mathrm{d} x = \frac{1}{a^3} \left[ \frac{1}{2} (ax+b)^2 - 2b (ax+b) + b^2 \ln |ax+b| \right] + C

  5. dxx(ax+b)=1blnax+bx+C\int \frac{\mathrm{d} x}{x(ax+b)} = -\frac{1}{b} \ln \left| \frac{ax+b}{x} \right| + C

  6. dxx2(ax+b)=1bx+ab2lnax+bx+C\int \frac{\mathrm{d} x}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \ln \left| \frac{ax+b}{x} \right| + C

  7. x(ax+b)2dx=1a2(lnax+b+bax+b)+C\int \frac{x}{(ax+b)^2} \mathrm{d} x = \frac{1}{a^2} \left( \ln |ax+b| + \frac{b}{ax+b} \right) + C

  8. x2(ax+b)2dx=1a3(ax+b2blnax+bb2ax+b)+C\int \frac{x^2}{(ax+b)^2} \mathrm{d} x = \frac{1}{a^3} \left(ax + b - 2b \ln |ax+b| - \frac{b^2}{ax+b} \right) + C

  9. dxx(ax+b)2=1b(ax+b)1b2lnax+bx+C\int \frac{\mathrm{d} x}{x(ax+b)^2} = \frac{1}{b(ax+b)} - \frac{1}{b^2} \ln \left| \frac{ax+b}{x} \right| + C

(二) 含有 ax+b\sqrt{ax+b} 的积分

  1. ax+bdx=23a(ax+b)3+C\int \sqrt{ax+b} \, \mathrm{d} x = \frac{2}{3a} \sqrt{(ax+b)^3} + C

  2. xax+bdx=215a2(3ax2b)(ax+b)3+C\int x \sqrt{ax+b} \, \mathrm{d} x = \frac{2}{15a^2} (3ax - 2b) \sqrt{(ax+b)^3} + C

  3. x2ax+bdx=2105a3(15a2x212abx+8b2)(ax+b)3+C\int x^2 \sqrt{ax+b} \, \mathrm{d} x = \frac{2}{105a^3} (15a^2 x^2 - 12abx + 8b^2) \sqrt{(ax+b)^3} + C

  4. xax+bdx=23a2(ax2b)ax+b+C\int \frac{x}{\sqrt{ax+b}} \, \mathrm{d} x = \frac{2}{3a^2} (ax - 2b) \sqrt{ax+b} + C

  5. x2ax+bdx=215a3(3a2x24abx+8b2)ax+b+C\int \frac{x^2}{\sqrt{ax+b}} \, \mathrm{d} x = \frac{2}{15a^3} (3a^2 x^2 - 4abx + 8b^2) \sqrt{ax+b} + C

  6. dxxax+b={1blnax+bbax+b+b+C(b>0)2barctan(ax+bb)+C(b<0)\int \frac{\mathrm{d} x}{x \sqrt{ax+b}} = \begin{cases} \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}} \right| + C & (b > 0) \\ \frac{2}{\sqrt{-b}} \arctan \left( \sqrt{\frac{ax+b}{-b}} \right) + C & (b < 0) \end{cases}

  7. dxx2ax+b=ax+bbxa2bdxxax+b\int \frac{\mathrm{d} x}{x^2 \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{bx} - \frac{a}{2b} \int \frac{\mathrm{d} x}{x \sqrt{ax+b}}

  8. ax+bxdx=2ax+b+bdxxax+b\int \frac{\sqrt{ax+b}}{x} \, \mathrm{d} x = 2 \sqrt{ax+b} + b \int \frac{\mathrm{d} x}{x \sqrt{ax+b}}

  9. ax+bx2dx=ax+bx+a2dxxax+b\int \frac{\sqrt{ax+b}}{x^2} \, \mathrm{d} x = -\frac{\sqrt{ax+b}}{x} + \frac{a}{2} \int \frac{\mathrm{d} x}{x \sqrt{ax+b}}

(三) 含有 x2±a2x^2 \pm a^2 的积分

  1. dxx2+a2=1aarctanxa+C\int \frac{\mathrm{d} x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C

  2. dx(x2+a2)n=x2(n1)a2(x2+a2)n1+2n32(n1)a2dx(x2+a2)n1\int \frac{\mathrm{d} x}{(x^2 + a^2)^n} = \frac{x}{2(n-1)a^2(x^2 + a^2)^{n-1}} + \frac{2n-3}{2(n-1)a^2} \int \frac{\mathrm{d} x}{(x^2 + a^2)^{n-1}}

  3. dxx2a2=12alnxax+a+C\int \frac{\mathrm{d} x}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C

(四) 含有 ax2+b(a>0)ax^2 + b \quad (a > 0) 的积分

  1. dxax2+b={1abarctanabx+C(b>0)12ablnaxbax+b+C(b<0)\int \frac{\mathrm{d} x}{ax^2 + b} = \begin{cases} \frac{1}{\sqrt{ab}} \arctan \sqrt{\frac{a}{b}} x + C & (b > 0) \\ \frac{1}{2 \sqrt{-ab}} \ln \left| \frac{\sqrt{a} x - \sqrt{-b}}{\sqrt{a} x + \sqrt{-b}} \right| + C & (b < 0) \end{cases}

  2. xax2+bdx=12alnax2+b+C\int \frac{x}{ax^2 + b} \mathrm{d} x = \frac{1}{2a} \ln \left| ax^2 + b \right| + C

  3. x2ax2+bdx=xabadxax2+b\int \frac{x^2}{ax^2 + b} \mathrm{d} x = \frac{x}{a} - \frac{b}{a} \int \frac{\mathrm{d} x}{ax^2 + b}

  4. dxx(ax2+b)=12blnx2ax2+b+C\int \frac{\mathrm{d} x}{x(ax^2 + b)} = \frac{1}{2b} \ln \frac{x^2}{| ax^2 + b |} + C

  5. dxx2(ax2+b)=1bxabdxax2+b\int \frac{\mathrm{d} x}{x^2 (ax^2 + b)} = -\frac{1}{bx} - \frac{a}{b} \int \frac{\mathrm{d} x}{ax^2 + b}

  6. dxx3(ax2+b)=a2b2lnax2+bx212bx2+C\int \frac{\mathrm{d} x}{x^3 (ax^2 + b)} = \frac{a}{2b^2} \ln \frac{| ax^2 + b |}{x^2} - \frac{1}{2bx^2} + C

  7. dx(ax2+b)2=x2b(ax2+b)+12bdxax2+b\int \frac{\mathrm{d} x}{(ax^2 + b)^2} = \frac{x}{2b(ax^2 + b)} + \frac{1}{2b} \int \frac{\mathrm{d} x}{ax^2 + b}

(五) 含有 ax2+bx+c(a>0)ax^2 + bx + c \quad (a > 0) 的积分

  1. dxax2+bx+c={24acb2arctan(2ax+b4acb2)+C(b2<4ac)1b24acln2ax+bb24ac2ax+b+b24ac+C(b2>4ac)\int \frac{\mathrm{d} x}{ax^2 + bx + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} \arctan \left( \frac{2ax + b}{\sqrt{4ac - b^2}} \right) + C & (b^2 < 4ac) \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| + C & (b^2 > 4ac) \end{cases}

  2. xax2+bx+cdx=12alnax2+bx+cb2adxax2+bx+c\int \frac{x}{ax^2 + bx + c} \mathrm{d} x = \frac{1}{2a} \ln \left| ax^2 + bx + c \right| - \frac{b}{2a} \int \frac{\mathrm{d} x}{ax^2 + bx + c}

(六) 含有 x2+a2(a>0)\sqrt{x^2+a^2} \quad (a>0) 的积分

  1. dxx2+a2=arshxa+C1=ln(x+x2+a2)+C\int \frac{\mathrm{d} x}{\sqrt{x^2+a^2}} = \text{arsh} \frac{x}{a} + C_1 = \ln(x + \sqrt{x^2 + a^2}) + C

  2. dx(x2+a2)3=xa2x2+a2+C\int \frac{\mathrm{d} x}{\sqrt{(x^2+a^2)^3}} = \frac{x}{a^2 \sqrt{x^2 + a^2}} + C

  3. xx2+a2dx=x2+a2+C\int \frac{x}{\sqrt{x^2 + a^2}} \, \mathrm{d} x = \sqrt{x^2 + a^2} + C

  4. x(x2+a2)3dx=1x2+a2+C\int \frac{x}{\sqrt{(x^2 + a^2)^3}} \mathrm{d} x = -\frac{1}{\sqrt{x^2 + a^2}} + C

  5. x2x2+a2dx=x2x2+a2a22ln(x+x2+a2)+C\int \frac{x^2}{\sqrt{x^2 + a^2}} \, \mathrm{d} x = \frac{x}{2} \sqrt{x^2 + a^2} - \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C

  6. x2(x2+a2)3dx=xx2+a2+ln(x+x2+a2)+C\int \frac{x^2}{\sqrt{(x^2 + a^2)^3}} \, \mathrm{d} x = -\frac{x}{\sqrt{x^2 + a^2}} + \ln(x + \sqrt{x^2 + a^2}) + C

  7. dxxx2+a2=1alnx2+a2ax+C\int \frac{\mathrm{d} x}{x \sqrt{x^2 + a^2}} = \frac{1}{a} \ln \frac{\sqrt{x^2 + a^2} - a}{|x|} + C

  8. dxx2x2+a2=x2+a2a2x+C\int \frac{\mathrm{d} x}{x^2 \sqrt{x^2 + a^2}} = -\frac{\sqrt{x^2 + a^2}}{a^2 x} + C

  9. x2+a2dx=x2x2+a2+a22ln(x+x2+a2)+C\int \sqrt{x^2 + a^2} \, \mathrm{d} x = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C

  10. (x2+a2)3dx=x8(2x2+5a2)x2+a2+38a4ln(x+x2+a2)+C\int \sqrt{(x^2 + a^2)^3} \, \mathrm{d} x = \frac{x}{8} (2x^2 + 5a^2) \sqrt{x^2 + a^2} + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2}) + C

  11. xx2+a2dx=13(x2+a2)3+C\int x \sqrt{x^2 + a^2} \, \mathrm{d} x = \frac{1}{3} \sqrt{(x^2 + a^2)^3} + C

  12. x2x2+a2dx=x8(2x2+a2)x2+a2a48ln(x+x2+a2)+C\int x^2 \sqrt{x^2 + a^2} \, \mathrm{d} x = \frac{x}{8} (2x^2 + a^2) \sqrt{x^2 + a^2} - \frac{a^4}{8} \ln(x + \sqrt{x^2 + a^2}) + C

  13. x2+a2xdx=x2+a2+alnx2+a2ax+C\int \frac{\sqrt{x^2 + a^2}}{x} \, \mathrm{d} x = \sqrt{x^2 + a^2} + a \ln \frac{\sqrt{x^2 + a^2} - a}{|x|} + C

  14. x2+a2x2dx=x2+a2x+ln(x+x2+a2)+C\int \frac{\sqrt{x^2 + a^2}}{x^2} \, \mathrm{d} x = -\frac{\sqrt{x^2 + a^2}}{x} + \ln(x + \sqrt{x^2 + a^2}) + C

(七) 含有 x2a2(a>0)\sqrt{x^2 - a^2} \quad (a > 0) 的积分

  1. dxx2a2=xxarchxa+C1=lnx+x2a2+C\int \frac{\mathrm{d} x}{\sqrt{x^2 - a^2}} = \frac{x}{|x|} \text{arch} \frac{|x|}{a} + C_1 = \ln \left| x + \sqrt{x^2 - a^2} \right| + C

  2. dx(x2a2)3=xa2x2a2+C\int \frac{\mathrm{d} x}{\left( \sqrt{x^2 - a^2} \right)^3} = - \frac{x}{a^2 \sqrt{x^2 - a^2}} + C

  3. xx2a2dx=x2a2+C\int \frac{x}{\sqrt{x^2 - a^2}} \mathrm{d} x = \sqrt{x^2 - a^2} + C

  4. x(x2a2)3dx=1x2a2+C\int \frac{x}{\sqrt{(x^2 - a^2)^3}} \mathrm{d} x = - \frac{1}{\sqrt{x^2 - a^2}} + C

  5. x2x2a2dx=x2x2a2+a22lnx+x2a2+C\int \frac{x^2}{\sqrt{x^2 - a^2}} \mathrm{d} x = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \ln \left| x + \sqrt{x^2 - a^2} \right| + C

  6. x2(x2a2)3dx=xx2a2+lnx+x2a2+C\int \frac{x^2}{\left( \sqrt{x^2 - a^2} \right)^3} \mathrm{d} x = - \frac{x}{\sqrt{x^2 - a^2}} + \ln \left| x + \sqrt{x^2 - a^2} \right| + C

  7. dxxx2a2=1aarccosax+C\int \frac{\mathrm{d} x}{x \sqrt{x^2 - a^2}} = \frac{1}{a} \text{arccos} \frac{a}{|x|} + C

  8. dxx2x2a2=x2a2a2x+C\int \frac{\mathrm{d} x}{x^2 \sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{a^2 x} + C

  9. x2a2dx=x2x2a2a22lnx+x2a2+C\int \sqrt{x^2 - a^2} \mathrm{d} x = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln \left| x + \sqrt{x^2 - a^2} \right| + C

  10. (x2a2)3dx=x8(2x25a2)x2a2+38a4lnx+x2a2+C\int \sqrt{(x^2 - a^2)^3} \, \mathrm{d} x = \frac{x}{8} \left(2x^2 - 5a^2\right) \sqrt{x^2 - a^2} + \frac{3}{8} a^4 \ln \left| x + \sqrt{x^2 - a^2} \right| + C

  11. xx2a2dx=13(x2a2)3+C\int x \sqrt{x^2 - a^2} \, \mathrm{d} x = \frac{1}{3} \sqrt{(x^2 - a^2)^3} + C

  12. x2x2a2dx=x8(2x2a2)x2a2a48lnx+x2a2+C\int x^2 \sqrt{x^2 - a^2} \, \mathrm{d} x = \frac{x}{8} \left(2x^2 - a^2\right) \sqrt{x^2 - a^2} - \frac{a^4}{8} \ln \left| x + \sqrt{x^2 - a^2} \right| + C

  13. x2a2xdx=x2a2aarccosax+C\int \frac{\sqrt{x^2 - a^2}}{x} \, \mathrm{d} x = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|} + C

  14. x2a2x2dx=x2a2x+lnx+x2a2+C\int \frac{\sqrt{x^2 - a^2}}{x^2} \, \mathrm{d} x = -\frac{\sqrt{x^2 - a^2}}{x} + \ln \left| x + \sqrt{x^2 - a^2} \right| + C

(八) 含有 a2x2(a>0)\sqrt{a^2 - x^2} \quad (a > 0) 的积分

  1. dxa2x2=arcsinxa+C\int \frac{\mathrm{d} x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C

  2. dx(a2x2)3=xa2a2x2+C\int \frac{\mathrm{d} x}{\left( \sqrt{a^2 - x^2} \right)^3} = \frac{x}{a^2 \sqrt{a^2 - x^2}} + C

  3. xa2x2dx=a2x2+C\int \frac{x}{\sqrt{a^2 - x^2}} \mathrm{d} x = -\sqrt{a^2 - x^2} + C

  4. x(a2x2)3dx=1a2x2+C\int \frac{x}{\sqrt{(a^2 - x^2)^3}} \mathrm{d} x = \frac{1}{\sqrt{a^2 - x^2}} + C

  5. x2a2x2dx=x2a2x2+a22arcsinxa+C\int \frac{x^2}{\sqrt{a^2 - x^2}} \mathrm{d} x = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C

  6. x2(a2x2)3dx=xa2x2arcsinxa+C\int \frac{x^2}{\sqrt{(a^2 - x^2)^3}} \mathrm{d} x = \frac{x}{\sqrt{a^2 - x^2}} - \arcsin \frac{x}{a} + C

  7. dxxa2x2=1alnaa2x2x+C\int \frac{\mathrm{d} x}{x \sqrt{a^2 - x^2}} = \frac{1}{a} \ln \frac{a - \sqrt{a^2 - x^2}}{|x|} + C

  8. dxx2a2x2=a2x2a2x+C\int \frac{\mathrm{d} x}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x} + C

  9. a2x2dx=x2a2x2+a22arcsinxa+C\int \sqrt{a^2 - x^2} \mathrm{d} x = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C

  10. (a2x2)3dx=x8(5a22x2)a2x2+38a4arcsinxa+C\int \sqrt{\left( a^2 - x^2 \right)^3} \mathrm{d} x = \frac{x}{8} \left( 5a^2 - 2x^2 \right) \sqrt{a^2 - x^2} + \frac{3}{8} a^4 \arcsin \frac{x}{a} + C

  11. xa2x2dx=13(a2x2)3+C\int x \sqrt{a^2 - x^2} \mathrm{d} x = -\frac{1}{3} \sqrt{\left( a^2 - x^2 \right)^3} + C

  12. x2a2x2dx=x8(2x2a2)a2x2+a48arcsinxa+C\int x^2 \sqrt{a^2 - x^2} \mathrm{d} x = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a} + C

  13. a2x2xdx=a2x2+alnaa2x2x+C\int \frac{\sqrt{a^2 - x^2}}{x} \mathrm{d} x = \sqrt{a^2 - x^2} + a \ln \frac{a - \sqrt{a^2 - x^2}}{|x|} + C

  14. a2x2x2dx=a2x2xarcsinxa+C\int \frac{\sqrt{a^2 - x^2}}{x^2} \mathrm{d} x = - \frac{\sqrt{a^2 - x^2}}{x} - \arcsin \frac{x}{a} + C

(九) 含有 ±ax2+bx+c(a>0)\sqrt{\pm ax^2 + bx + c} \quad (a > 0) 的积分

  1. dxax2+bx+c=1aln2ax+b+2aax2+bx+c+C\int \frac{\mathrm{d} x}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2 \sqrt{a} \sqrt{ax^2 + bx + c} \right| + C

  2. ax2+bx+cdx=2ax+b4aax2+bx+c+4acb28a3ln2ax+b+2aax2+bx+c+C\int \sqrt{ax^2 + bx + c} \mathrm{d} x = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8 \sqrt{a^3}} \ln \left| 2ax + b + 2 \sqrt{a} \sqrt{ax^2 + bx + c} \right| + C

  3. xax2+bx+cdx=1aax2+bx+cb2a3ln2ax+b+2aax2+bx+c+C\int \frac{x}{\sqrt{ax^2 + bx + c}} \mathrm{d} x = \frac{1}{a} \sqrt{ax^2 + bx + c} - \frac{b}{2 \sqrt{a^3}} \ln \left| 2ax + b + 2 \sqrt{a} \sqrt{ax^2 + bx + c} \right| + C

  4. dxc+bxax2=1aarcsin2axbb2+4ac+C\int \frac{\mathrm{d} x}{\sqrt{c + bx - ax^2}} = \frac{1}{\sqrt{a}} \arcsin \frac{2ax - b}{\sqrt{b^2 + 4ac}} + C

  5. c+bxax2dx=2axb4ac+bxax2+b2+4ac8a3arcsin2axbb2+4ac+C\int \sqrt{c + bx - ax^2} \mathrm{d} x = \frac{2ax - b}{4a} \sqrt{c + bx - ax^2} + \frac{b^2 + 4ac}{8 \sqrt{a^3}} \arcsin \frac{2ax - b}{\sqrt{b^2 + 4ac}} + C

  6. xc+bxax2dx=1ac+bxax2+b2a3arcsin2axbb2+4ac+C\int \frac{x}{\sqrt{c + bx - ax^2}} \mathrm{d} x = - \frac{1}{a} \sqrt{c + bx - ax^2} + \frac{b}{2 \sqrt{a^3}} \arcsin \frac{2ax - b}{\sqrt{b^2 + 4ac}} + C

(十) 含有 ±xaxb\sqrt{\pm \frac{x-a}{x-b}}(xa)(bx)\sqrt{(x-a)(b-x)} 的积分

  1. xaxbdx=(xb)xaxb+(ba)ln(xa+xb)+C\int \sqrt{\frac{x-a}{x-b}} \, \mathrm{d} x = (x-b) \sqrt{\frac{x-a}{x-b}} + (b-a) \ln \left( \sqrt{|x-a|} + \sqrt{|x-b|} \right) + C

  2. xabxdx=(xb)xabx+(ba)arcsinxaba+C\int \sqrt{\frac{x-a}{b-x}} \, \mathrm{d} x = (x-b) \sqrt{\frac{x-a}{b-x}} + (b-a) \arcsin \sqrt{\frac{x-a}{b-a}} + C

  3. dx(xa)(bx)=2arcsinxaba+C(a<b)\int \frac{\mathrm{d} x}{\sqrt{(x-a)(b-x)}} = 2 \arcsin \sqrt{\frac{x-a}{b-a}} + C \quad (a < b)

  4. (xa)(bx)dx=2xab4(xa)(bx)+(ba)24arcsinxaba+C(a<b)\int \sqrt{(x-a)(b-x)} \, \mathrm{d} x = \frac{2x-a-b}{4} \sqrt{(x-a)(b-x)} + \frac{(b-a)^2}{4} \arcsin \sqrt{\frac{x-a}{b-a}} + C \quad (a < b)

(十一) 含有三角函数的积分

  1. sinxdx=cosx+C\int \sin x \, \mathrm{d} x = -\cos x + C

  2. cosxdx=sinx+C\int \cos x \, \mathrm{d} x = \sin x + C

  3. tanxdx=lncosx+C\int \tan x \, \mathrm{d} x = -\ln | \cos x | + C

  4. cotxdx=lnsinx+C\int \cot x \, \mathrm{d} x = \ln | \sin x | + C

  5. secxdx=lntan(π4+x2)+C=lnsecx+tanx+C\int \sec x \, \mathrm{d} x = \ln \left| \tan \left( \frac{\pi}{4} + \frac{x}{2} \right) \right| + C = \ln | \sec x + \tan x | + C

  6. cscxdx=lntanx2+C=lncscxcotx+C\int \csc x \, \mathrm{d} x = \ln \left| \tan \frac{x}{2} \right| + C = \ln | \csc x - \cot x | + C

  7. sec2xdx=tanx+C\int \sec^2 x \, \mathrm{d} x = \tan x + C

  8. csc2xdx=cotx+C\int \csc^2 x \, \mathrm{d} x = -\cot x + C

  9. secxtanxdx=secx+C\int \sec x \tan x \, \mathrm{d} x = \sec x + C

  10. cscxcotxdx=cscx+C\int \csc x \cot x \, \mathrm{d} x = -\csc x + C

  11. sin2xdx=x214sin2x+C\int \sin^2 x \, \mathrm{d} x = \frac{x}{2} - \frac{1}{4} \sin 2x + C

  12. cos2xdx=x2+14sin2x+C\int \cos^2 x \, \mathrm{d} x = \frac{x}{2} + \frac{1}{4} \sin 2x + C

  13. sinnxdx=1nsinn1xcosx+n1nsinn2xdx\int \sin^n x \, \mathrm{d} x = \frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, \mathrm{d} x

  14. cosnxdx=1ncosn1xsinx+n1ncosn2xdx\int \cos^n x \, \mathrm{d} x = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, \mathrm{d} x

  15. dxsinnx=1n1cosxsinn1x+n2n1dxsinn2x\int \frac{\mathrm{d} x}{\sin^n x} = -\frac{1}{n-1} \cdot \frac{\cos x}{\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{\mathrm{d} x}{\sin^{n-2} x}

  16. dxcosnx=1n1sinxcosn1x+n2n1dxcosn2x\int \frac{\mathrm{d} x}{\cos^n x} = \frac{1}{n-1} \cdot \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{\mathrm{d} x}{\cos^{n-2} x}

  17. cosmxsinnxdx=1m+ncosm1xsinn+1x+m1m+ncosm2xsinnxdx=1m+ncosm+1xsinn1x+n1m+ncosmxsinn2xdx\int \cos^m x \sin^n x \, \mathrm{d} x \\ = \frac{1}{m+n} \cos^{m-1} x \sin^{n+1} x + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x \, \mathrm{d} x \\ = -\frac{1}{m+n} \cos^{m+1} x \sin^{n-1} x + \frac{n-1}{m+n} \int \cos^m x \sin^{n-2} x \, \mathrm{d} x

  18. sinaxcosbxdx=12(a+b)cos(a+b)x12(ab)cos(ab)x+C\int \sin ax \cos bx \, \mathrm{d} x = -\frac{1}{2(a+b)} \cos (a+b)x - \frac{1}{2(a-b)} \cos (a-b)x + C

  19. sinaxsinbxdx=12(a+b)sin(a+b)x+12(ab)sin(ab)x+C\int \sin ax \sin bx \, \mathrm{d} x = -\frac{1}{2(a+b)} \sin (a+b)x + \frac{1}{2(a-b)} \sin (a-b)x + C

  20. cosaxcosbxdx=12(a+b)sin(a+b)x+12(ab)sin(ab)x+C\int \cos ax \cos bx\mathrm{d} x = \frac{1}{2(a+b)}\sin (a+b)x + \frac{1}{2(a-b)}\sin (a-b)x + C

  21. dxa+bsinx=2a2b2arctanatanx2+ba2b2+C(a2>b2)\int \frac{\mathrm{d} x}{a+b\sin x} = \frac{2}{\sqrt{a^2-b^2}} \arctan \frac{a \tan \frac{x}{2} + b}{\sqrt{a^2-b^2}} + C \quad (a^2 > b^2)

  22. dxa+bsinx=1b2a2lnatanx2+bb2a2atanx2+b+b2a2+C(a2<b2)\int \frac{\mathrm{d} x}{a+b\sin x} = \frac{1}{\sqrt{b^2-a^2}} \ln \left| \frac{a \tan \frac{x}{2} + b - \sqrt{b^2-a^2}}{a \tan \frac{x}{2} + b + \sqrt{b^2-a^2}} \right| + C \quad (a^2 < b^2)

  23. dxa+bcosx=2a+ba+babarctan(aba+btanx2)+C(a2>b2)\int \frac{\mathrm{d} x}{a+b\cos x} = \frac{2}{a+b} \sqrt{\frac{a+b}{a-b}} \arctan \left( \sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2} \right) + C \quad (a^2 > b^2)

  24. dxa+bcosx=1a+ba+bbalntanx2+a+bbatanx2a+bba+C(a2<b2)\int \frac{\mathrm{d} x}{a+b\cos x} = \frac{1}{a+b} \sqrt{\frac{a+b}{b-a}} \ln \left| \frac{\tan \frac{x}{2} + \sqrt{\frac{a+b}{b-a}}}{\tan \frac{x}{2} - \sqrt{\frac{a+b}{b-a}}} \right| + C \quad (a^2 < b^2)

  25. dxa2cos2x+b2sin2x=1abarctan(batanx)+C\int \frac{\mathrm{d} x}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \arctan \left( \frac{b}{a} \tan x \right) + C

  26. dxa2cos2xb2sin2x=12ablnbtanx+abtanxa+C\int \frac{\mathrm{d} x}{a^2 \cos^2 x - b^2 \sin^2 x} = \frac{1}{2ab} \ln \left| \frac{b \tan x + a}{b \tan x - a} \right| + C

  27. xsinaxdx=1a2sinax1axcosax+C\int x \sin ax \mathrm{d} x = \frac{1}{a^2} \sin ax - \frac{1}{a} x \cos ax + C

  28. x2sinaxdx=1ax2cosax+2a2xsinax+2a3cosax+C\int x^2 \sin ax \mathrm{d} x = -\frac{1}{a} x^2 \cos ax + \frac{2}{a^2} x \sin ax + \frac{2}{a^3} \cos ax + C

  29. xcosaxdx=1a2cosax+1axsinax+C\int x \cos ax \mathrm{d} x = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax + C

  30. x2cosaxdx=1ax2sinax+2a2xcosax2a3sinax+C\int x^2 \cos ax \mathrm{d} x = \frac{1}{a} x^2 \sin ax + \frac{2}{a^2} x \cos ax - \frac{2}{a^3} \sin ax + C

(十二) 含有反三角函数的积分 (其中 a>0a > 0)

  1. arcsinxadx=xarcsinxa+a2x2+C\int \arcsin \frac{x}{a} \mathrm{d} x = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2} + C

  2. xarcsinxadx=(x22a24)arcsinxa+x4a2x2+C\int x \arcsin \frac{x}{a} \mathrm{d} x = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{a^2 - x^2} + C

  3. x2arcsinxadx=x33arcsinxa+19(x2+2a2)a2x2+C\int x^2 \arcsin \frac{x}{a} \mathrm{d} x = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{1}{9} (x^2 + 2a^2) \sqrt{a^2 - x^2} + C

  4. arccosxadx=xarccosxaa2x2+C\int \arccos \frac{x}{a} \mathrm{d} x = x \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + C

  5. xarccosxadx=(x22a24)arccosxax4a2x2+C\int x \arccos \frac{x}{a} \,\mathrm{d} x = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arccos \frac{x}{a} - \frac{x}{4} \sqrt{a^2 - x^2} + C

  6. x2arccosxadx=x33arccosxa19(x2+2a2)a2x2+C\int x^2 \arccos \frac{x}{a} \,\mathrm{d} x = \frac{x^3}{3} \arccos \frac{x}{a} - \frac{1}{9} (x^2 + 2a^2) \sqrt{a^2 - x^2} + C

  7. arctanxadx=xarctanxaa2ln(a2+x2)+C\int \arctan \frac{x}{a} \,\mathrm{d} x = x \arctan \frac{x}{a} - \frac{a}{2} \ln \left( a^2 + x^2 \right) + C

  8. xarctanxadx=12(a2+x2)arctanxaa2x+C\int x \arctan \frac{x}{a} \,\mathrm{d} x = \frac{1}{2} \left( a^2 + x^2 \right) \arctan \frac{x}{a} - \frac{a}{2} x + C

  9. x2arctanxadx=x33arctanxaa6x2+a36ln(a2+x2)+C\int x^2 \arctan \frac{x}{a} \,\mathrm{d} x = \frac{x^3}{3} \arctan \frac{x}{a} - \frac{a}{6} x^2 + \frac{a^3}{6} \ln \left( a^2 + x^2 \right) + C

(十三) 含有指数函数的积分

  1. axdx=1lnaax+C\int a^x \,\mathrm{d} x = \frac{1}{\ln a} a^x + C

  2. eaxdx=1aeax+C\int e^{ax} \,\mathrm{d} x = \frac{1}{a} e^{ax} + C

  3. xeaxdx=1a2(ax1)eax+C\int x e^{ax} \,\mathrm{d} x = \frac{1}{a^2} (ax - 1) e^{ax} + C

  4. xneaxdx=1axneaxnaxn1eaxdx\int x^n e^{ax} \,\mathrm{d} x = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} \,\mathrm{d} x

  5. xaxdx=xlnaax1(lna)2ax+C\int x a^x \,\mathrm{d} x = \frac{x}{\ln a} a^x - \frac{1}{(\ln a)^2} a^x + C

  6. xnaxdx=1lnaxnaxnlnaxn1axdx\int x^n a^x \,\mathrm{d} x = \frac{1}{\ln a} x^n a^x - \frac{n}{\ln a} \int x^{n-1} a^x \,\mathrm{d} x

  7. eaxsinbxdx=1a2+b2eax(asinbxbcosbx)+C\int e^{ax} \sin bx \,\mathrm{d} x = \frac{1}{a^2 + b^2} e^{ax} (a \sin bx - b \cos bx) + C

  8. eaxcosbxdx=1a2+b2eax(bsinbx+acosbx)+C\int e^{ax} \cos bx \,\mathrm{d} x = \frac{1}{a^2 + b^2} e^{ax} (b \sin bx + a \cos bx) + C

  9. eaxsinnbxdx=1a2+b2n2eaxsinn1bx(asinbxnbcosbx)+n(n1)b2a2+b2n2eaxsinn2bxdx\int e^{ax} \sin^n bx \,\mathrm{d} x = \frac{1}{a^2 + b^2 n^2} e^{ax} \sin^{n-1} bx \left( a \sin bx - n b \cos bx \right) + \frac{n (n-1) b^2}{a^2 + b^2 n^2} \int e^{ax} \sin^{n-2} bx \,\mathrm{d} x

  10. eaxcosnbxdx=1a2+b2n2eaxcosn1bx(acosbx+nbsinbx)+n(n1)b2a2+b2n2eaxcosn2bxdx\int e^{ax} \cos^n bx \,\mathrm{d} x = \frac{1}{a^2 + b^2 n^2} e^{ax} \cos^{n-1} bx \left( a \cos bx + n b \sin bx \right) + \frac{n (n-1) b^2}{a^2 + b^2 n^2} \int e^{ax} \cos^{n-2} bx \,\mathrm{d} x

(十四) 含有对数函数的积分

  1. lnxdx=xlnxx+C\int \ln x \,\mathrm{d} x = x \ln x - x + C

  2. dxxlnx=lnlnx+C\int \frac{\mathrm{d} x}{x \ln x} = \ln |\ln x| + C

  3. xnlnxdx=1n+1xn+1(lnx1n+1)+C\int x^n \ln x \,\mathrm{d} x = \frac{1}{n+1} x^{n+1} \left( \ln x - \frac{1}{n+1} \right) + C

  4. (lnx)ndx=x(lnx)nn(lnx)n1dx\int (\ln x)^n \,\mathrm{d} x = x (\ln x)^n - n \int (\ln x)^{n-1} \,\mathrm{d} x

  5. xm(lnx)ndx=1m+1xm+1(lnx)nnm+1xm(lnx)n1dx\int x^m (\ln x)^n \,\mathrm{d} x = \frac{1}{m+1} x^{m+1} (\ln x)^n - \frac{n}{m+1} \int x^m (\ln x)^{n-1} \,\mathrm{d} x

(十五) 含有双曲函数的积分

  1. shxdx=chx+C\int \operatorname{sh} x \,\mathrm{d} x = \operatorname{ch} x + C

  2. chxdx=shx+C\int \operatorname{ch} x \,\mathrm{d} x = \operatorname{sh} x + C

  3. thxdx=lnchx+C\int \operatorname{th} x \,\mathrm{d} x = \ln \operatorname{ch} x + C

  4. sh2xdx=x2+14sh2x+C\int \operatorname{sh}^2 x \,\mathrm{d} x = -\frac{x}{2} + \frac{1}{4} \operatorname{sh} 2x + C

  5. ch2xdx=x2+14sh2x+C\int \operatorname{ch}^2 x \,\mathrm{d} x = \frac{x}{2} + \frac{1}{4} \operatorname{sh} 2x + C

(十六) 定积分

  1. ππcosnxdx=ππsinnxdx=0\int_{-\pi}^{\pi} \cos nx \,\mathrm{d} x = \int_{-\pi}^{\pi} \sin nx \,\mathrm{d} x = 0

  2. ππcosmxsinnxdx=0\int_{-\pi}^{\pi} \cos mx \sin nx \,\mathrm{d} x = 0

  3. ππcosmxcosnxdx={0,mn,π,m=n.\int_{-\pi}^{\pi} \cos mx \cos nx \,\mathrm{d} x = \begin{cases} 0, & m \neq n, \\ \pi, & m = n. \end{cases}

  4. ππsinmxsinnxdx={0,mn,π,m=n.\int_{-\pi}^{\pi} \sin mx \sin nx \,\mathrm{d} x = \begin{cases} 0, & m \neq n, \\ \pi, & m = n. \end{cases}

  5. 0πsinmxsinnxdx=0πcosmxcosnxdx={0,mn,π2,m=n.\int_{0}^{\pi} \sin mx \sin nx \,\mathrm{d} x = \int_{0}^{\pi} \cos mx \cos nx \,\mathrm{d} x = \begin{cases} 0, & m \neq n, \\ \frac{\pi}{2}, & m = n. \end{cases}

  6. In=0π2sinnxdx=0π2cosnxdxI_n = \int_{0}^{\frac{\pi}{2}} \sin^n x \, \mathrm{d} x = \int_{0}^{\frac{\pi}{2}} \cos^n x \, \mathrm{d} x

    In=n1nIn2I_n = \frac{n-1}{n} I_{n-2}

    ={n1nn3n24523(n 为大于 1 的正奇数),I1=1,n1nn3n23412π2(n 为正偶数),I0=π2.= \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \, \cdots \, \cdot \frac{4}{5} \cdot \frac{2}{3} & (n \text{ 为大于 }1\text{ 的正奇数}), & I_1 = 1, \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \, \cdots \, \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} & (n \text{ 为正偶数}), & I_0 = \frac{\pi}{2}. \end{cases}